Иммуноглобулины, структура и функции. Иммуноглобулины

Иммуноглобулины - это молекулы гликопротеинов, которые продуцируют плазматические клетки в ответ на иммуноген-антиген (чужеродная молекула, включающая иммунный ответ - молекулы поверхности бактерий, вирусов, грибов). Иммуноглобулины выполняют функцию антител.

Общие функции иммуноглобулинов:

  • Специфическое связывание антигена - защитная функция
  • Активация комплемента,
  • Связь с различными клетками иммунной системы

Общая структура иммуноглобулинов (рис.1).

Иммуноглобулины (Igs) - гликопротеины, состоят из легких (L) и тяжелых (Н) полипептидных цепей.
Простейшая молекулу антитела имеет форму Y и состоит из четырех полипептидных цепей: двух Н-цепей и двух цепей L. Четыре цепи связаны дисульфидными мостиками. В молекуле антител различают вариабельные (V L и V H) и константные (C L и C H) области и шарнирный участок.

Н-цепи различны для каждого из пяти классов (изотипов) иммуноглобулинов и обозначаются γ, α, μ, δ и ε, Тип тяжелой цепи определяет название класса, а именно
IgA, IgG, IgM, IgD, IgE. Легких цепей только два вида κ и λ . В структуре молекулы иммуноглобулинов содержатся только один из двух видов легких цепей.

L и Н-цепи подразделяются на вариабельные и константные области. Области состоят из трехмерно уложенных, повторяющихся сегментов, называемых доменами. L цепь состоит из одного переменного (V L) и одного постоянного (C L) домена. Большая часть H цепей состоят из одного переменного (V H) и трёх постоянных (C H) доменов (IgG и IgA имеют три C H доменов, в то время как IgM и IgE - четыре.

Вариабельные области несут ответственность за связывание антигенов, тогда как константные - ответственны за различные биологические функции, например, активацию комплемента, связывание с рецепторами клеточной поверхности, перенос через плаценту..

Обе вариабельные области L и Н-цепей имеют три чрезвычайно переменных («гипервариабельных") аминокислотных последовательности на N конце. Они формируют сайт связывания антигена.

Под действием протеолитического фермента пепсина молекулы иммуноглобулинов расщепляются на два фрагмента: F(ab)2 - связывающий антиген, и Fc - кристаллизующийся. Домены Fc выполняют биологические, эффекторные функции иммуноглобулинов.

При электрофо резе сыворотки крови иммуноглобулины мигрируют во фракции гамма-глобулинов. Т ест на гамма-глобулины используется для оценки количества иммуноглобулинов в крови. Иммуноглобулины вырабатываются организмом в ответ на чужеродные вещества, такие как бактерии, вирусы и раковые клетки.

Тест на гамма-глобулины является диагностической процедурой, которая может помочь врачам определить проблему с тем, чтобы начать лечение. Следует отметить, что этот тест выполняется только в случае серьезных заболеваний.

Результаты определения иммуноглобулинов выдаются через несколько дней, нормальными значениями являются следующие:

  • IgA : 85 - 385 мг / дл
  • IgG : 565 - 1765 мг / дл
  • IgM : 55 - 375 мг / дл
  • IgD : 8 мг / дл или меньшей
  • IgE : 4,2 - 592 мг / дл

Оценка результатов анализа на иммуноглобулины (антитела)

Высокие и низкие значения не являются нормальными и могут быть признаком основного заболевания.

Высокие значения IgA могут быть признаком множественной миеломы, цирроза печени, хронического гепатита, ревматоидного артрита и системной красной волчанки или СКВ.

Низкие значения IgA могут быть признаком повреждения почек, некоторых видов лейкемии и энтеропатии.

Высокие значения IgG могут быть признаком СПИДа, рассеянного склероза и хронического гепатита.

Низкие значения IgG могут быть признаком макроглобулинемии, нефротического синдрома и некоторых видов лейкемии.

Низкие значения IgM могут указывать на множественную миелому, некоторые виды лейкемии и наследственные иммунные заболевания.

Низкие значения IgE являются показателем болезни, называемой атаксия-телеангиэктазия. Это редкое заболевание, при котором нарушена функция мышц.

Терапия гамма-глобулином

При электрофорезе белков сыворотки крови на бумаге или агаре из-за разного соотношения молекулярная масса/заряд белки перемещаются с разной скоростью. Как следствие образуются фракции альбумина, альфа - , бета- и гамма-глобулинов. Гамма-глобулиновая фракция представлена антителами, совокупность которых называют гамма-глобулин.

Доказано, что гамма-глобулин из крови человека может использоваться для лечения инфекций. Этот метод называется терапия гамма-глобулином. Процедура включает введение препарата гамма-глобулина в вену или мышцу.

Иммуноглобулины подразделяют на классы в зависимости от структуры, свойств и антигенных особенностей их тяжелых цепей. Легкие цепи в молекулах иммуноглобулинов представлены двумя изотипами - лямбда (λ) и каппа (κ), которые различаются по химическому составу как вариабельных, так и константных участков, в частности наличием модифицированной аминогруппы на М-конце к-цепи. Они одинаковы у всех классов. Тяжелые цепи иммуноглобулинов подразделены на 5 изотипов (γ, μ, α, δ, ε), которые определяют их принадлежность к одному из пяти классов иммуноглобулинов: G, М, A, D, Е соответственно. Они отличаются друг от друга по структуре, антигенным и другим свойствам.

Таким образом, в состав молекул разных классов иммуноглобулинов входят легкие и тяжелые цепи, которые относятся к разным изотипическим вариантам иммуноглобулинов.

Наряду с ними имеются аллотипические варианты (аллотипы) иммуноглобулинов, несущие индивидуальные антигенные генетические маркеры, которые служат для их дифференцировки.

Наличием специфического для каждого иммуноглобулина антигенсвязывающего участка, образованного гипервариабельными доменами легкой и тяжелой цепи, обусловлены их различные антигенные свойства. Эти различия положены в основу деления иммуноглобулинов на идиотипы. Накопление любых антител, несущих в структуре своих активных центров новые для организма антигенные эпитопы (идиотипы), приводит к индукции иммунного ответа на них с образованием антител, получивших название антиидиотипических.

Свойства иммуноглобулинов

Молекулы иммуноглобулинов разных классов построены из одних и тех же мономеров, имеющих по две тяжелых и по две легких цепи, которые способны соединяться в ди- и полимеры.

К мономерам относятся иммуноглобулины G и Е, к пентамерам - IgM, a IgA могут быть представлены мономерами, димерами и тетра-мерами. Мономеры соединены между собой так называемой соединительной цепью, или j-цепью (англ. joining - соединительный).

Иммуноглобулины разных классов отличаются друг от друга биологическими свойствами. Прежде всего это относится к их способности связывать антигены. В данной реакции у мономеров IgG и IgE участвуют два антигенсвязывающих участка (активных центра), обусловливающих бивалентность антител. При этом каждый активный центр связывается с одним из эпитопов поливалентного антигена, образуя сетевую структуру, которая выпадает в осадок. Наряду с би- и поливалентными существуют моновалентные антитела, у которых функционирует лишь один из двух активных центров, способный связаться лишь с единичной антигенной детерминантой без последующего образования сетевой структуры иммунных комплексов. Такие антитела называются неполными, они выявляются в сыворотке крови с помощью реакции Кумбса.

Иммуноглобулины характеризуются различной авидностъю, под которой понимают скорость и прочность связывания с молекулой антигена. Авидность зависит от класса иммуноглобулинов. В этой связи наиболее выраженной авидностью обладают пентамеры иммуноглобулинов класса М. Авидность антител меняется в процессе иммунного ответа в связи с переходом от синтеза IgM к преимущественному синтезу IgG.

Разные классы иммуноглобулинов отличаются друг от друга по способности проходить через плаценту, связывать и активировать комплемент. За эти свойства отвечают отдельные домены Fc-фрагмента иммуноглобулина, образованные его тяжелой цепью. Так, например, цитотропность IgG определяется СγЗ-доменом, связывание комплемента - Сγ2-доменом и т.д.

Иммуноглобулины класса G (IgG) составляют около 80% сывороточных иммуноглобулинов (в среднем 12 г/л), с молекулярной массой 160000 и скоростью седиментации 7S. Они образуются на высоте первичного иммунного ответа и при повторном введении антигена (вторичный ответ). IgG обладают достаточно высокой авидностью, т.е. сравнительно высокой скоростью связывания с антигеном, особенно бактериальной природы. При связывании активных центров IgG с эпитопами антигена в области его Fc-фрагмента обнажается участок, ответственный за фиксацию первой фракции системы комплемента, с последующей активацией системы комплемента по классическому пути. Этим обусловливается способность IgG участвовать в защитных реакциях бактериолиза. IgG является единственным классом антител, проникающим через плаценту в организм плода. Через некоторое время после рождения ребенка содержание его в сыворотке крови падает и достигает минимальной концентрации к 3-4 мес, после чего начинает возрастать за счет накопления собственных IgG, достигая нормы к 7-летнему возрасту. Около 48% IgG содержится в тканевой жидкости, в которую он диффундирует из крови. IgG, так же как и иммуноглобулины других классов, подвергается катаболи-ческому распаду, который происходит в печени, макрофагах, воспалительном очаге под действием протеиназ.

Известны 4 подкласса IgG, различающиеся по структуре тяжелой цепи. Они обладают разной способностью взаимодействовать с комплементом и проходить через плаценту.

Иммуноглобулины класса М (IgM) первыми начинают синтезироваться в организме плода и первыми появляются в сыворотке крови после иммунизации людей большинством антигенов. Они составляют около 13% сывороточных иммуноглобулинов при средней концентрации 1 г/л. По молекулярной массе они значительно превосходят все другие классы иммуноглобулинов. Это связано с тем, что IgM являются пентамерами, т.е. состоят из 5 субъединиц, каждая из которых имеет молекулярную массу, близкую к IgG. IgM принадлежит большая часть нормальных антител - изогемагглютининов, которые присутствуют в сыворотке крови в соответствии с принадлежностью людей к определенным группам крови. Эти аллотипические варианты IgM играют важную роль при переливании крови. Они не проходят через плаценту и обладают наиболее высокой авидностью. При взаимодействии с антигенами in vitro вызывают их агглютинацию, преципитацию или связывание комплемента. В последнем случае активация системы комплемента ведет к лизису корпускулярных антигенов.

Иммуноглобулины класса A (IgA) встречаются в сыворотке крови и в секретах на поверхности слизистых оболочек. В сыворотке крови присутствуют мономеры IgA с константой седиментации 7S в концентрации 2,5 г/л. Данный уровень достигается к 10 годам жизни ребенки. Сывороточный IgA синтезируется в плазматических клетках селезенки, лимфатических узлов и слизистых оболочек. Они не агглютинируют и не преципитируют антигены, не способны активировать комплемент по классическому пути, вследствие чего не лизи-руют антигены.

Секреторные иммуноглобулины класса IgA (SIgA) отличаются от сывороточных наличием секреторного компонента, связанного с 2 или 3 мономерами иммуноглобулина А. Секреторный компонент является β-глобулином с молекулярной массой 71 KD. Он синтезируется клетками секреторного эпителия и может функционировать в качестве их рецептора, а к IgA присоединяется при прохождении последнего через эпителиальные клетки.

Секреторные IgA играют существенную роль в местном иммунитете, поскольку препятствуют адгезии микроорганизмов на эпителиальных клетках слизистых оболочек рта, кишечника, респираторных и мочевыводящих путей. Вместе с тем SIgA в агрегированной форме активирует комплемент по альтернативному пути, что приводит к стимуляции местной фагоцитарной защиты.

Секреторные IgA препятствуют адсорбции и репродукции вирусов в эпителиальных клетках слизистой оболочки, например при аденовируспой инфекции, полиомиелите, кори. Около 40% общего IgA содержится в крови.

Иммуноглобулины класса D (lgD). До 75% IgD содержится в крови, достигая концентрации 0,03 г/л. Он имеет молекулярную массу 180 000 D и скорость седиментации около 7S. IgD не проходит через плаценту и не связывает комплемент. До сих пор неясно, какие функции выполняет IgD. Полагают, что он является одним из рецепторов В-лимфоцитов.

Иммуноглобулины класса Е (lgE). В норме содержатся в крови в концентрации 0,00025 г/л. Они синтезируются плазматическими клетками в бронхиальных и перитонеальных лимфатических узлах, в слизистой оболочке желудочно-кишечного тракта со скоростью 0,02 мг/кг массы в сутки. Иммуноглобулины класса Е называют также реагинами, поскольку они принимают участие в анафилактических реакциях, обладая выраженной цитофильностью.

Иммуноглобулины по структуре, антигенным и иммунобио­логическим свойствам разделяются на пять классов: IgM, IgG, IgA, IgE, IgD.
Иммуноглобулин класса G. Изотип G состав­ляет основную массу Ig сыворотки крови. На его долю приходится 70-80 % всех сывороточ­ных Ig, при этом 50 % содержится в тканевой жидкости. Среднее содержание IgG в сыворот­ке крови здорового взрослого человека 12 г/л. Период полураспада IgG - 21 день.
IgG - мономер, имеет 2 антигенсвязывающих центра (может одновременно свя­зать 2 молекулы антигена, следовательно, его валентность равна 2), молекулярную массу около 160 кДа и константу седиментации 7S. Различают подтипы G1, G2, G3 и G4. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.
Обладает высокой аффинностью. IgG1 и IgG3 связывают комплемент, причем G3 ак­тивнее, чем G1. IgG4, подобно IgE, обладает цитофильностью (тропностью, или сродс­твом, к тучным клеткам и базофилам) и участ­вует в развитии аллергической реакции I типа. В иммунодиагностических реакциях IgG может проявлять себя как не­полное антитело.
Легко проходит через плацентарный барь­ер и обеспечивает гуморальный иммунитет новорожденного в первые 3-4 месяца жизни. Способен также выделяться в секрет слизис­тых, в том числе в молоко путем диффузии.
IgG обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности.
Иммуноглобулин класса М. Наиболее круп­ная молекула из всех Ig. Это пентамер, кото­рый имеет 10 антигенсвязывающих центров, т. е. его валентность равна 10. Молекулярная масса его около 900 кДа, константа седи­ментации 19S. Различают подтипы M1 и М2. Тяжелые цепи молекулы IgM в отличие от других изотипов построены из 5 доменов. Период полураспада IgM - 5 дней.
На его долю приходится около 5-10 % всех сывороточных Ig. Среднее содержание IgM в сыворотке крови здорового взрослого человека составляет около 1 г/л. Этот уровень у человека достигается уже к 2-4-летнему возрасту.
IgM филогенетически - наиболее древний иммуноглобулин. Синтезируется предшест­венниками и зрелыми В-лимфоцитами. Образуется в начале первичного иммунного ответа, также первым начинает синтезиро­ваться в организме новорожденного - опре­деляется уже на 20-й неделе внутриутробного развития.
Обладает высокой авидностью, наиболее эффективный активатор комплемента по клас­сическому пути. Участвует в формировании сывороточного и секреторного гуморального иммунитета. Являясь полимерной молекулой, содержащей J-цепь, может образовывать сек­реторную форму и выделяться в секрет сли­зистых, в том числе в молоко. Большая часть нормальных антител и изоагглютининов относится к IgM.
Не проходит через плаценту. Обнаружение специфических антител изотипа М в сыво­ротке крови новорожденного указывает на бывшую внутриутробную инфекцию или де­фект плаценты.
IgM обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности.
Иммуноглобулин класса А. Существует в сы­вороточной и секреторной формах. Около 60 % всех IgA содержится в секретах слизистых.
Сывороточный IgA:На его долю прихо­дится около 10-15% всех сывороточных Ig. В сыворотке крови здорового взрослого чело­века содержится около 2,5 г/л IgA, максимум достигается к 10-летнему возрасту. Период полураспада IgA - 6 дней.
IgA - мономер, имеет 2 антигенсвязывающих центра (т. е. 2-валентный), молекуляр­ную массу около 170 кДа и константу седи­ментации 7S. Различают подтипы А1 и А2. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.
Обладает высокой аффинностью. Может быть неполным антителом. Не связывает комплемент. Не проходит через плацентар­ный барьер.
IgA обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск антителозависимой клеточно-опосредованной цитотоксичности.
Секреторный IgA:В отличие от сывороточ­ного, секреторный sIgA существует в полимерной форме в виде ди- или тримера (4- или 6-валентный) и содержит J- и S-пeптиды. Молекулярная масса 350 кДа и выше, константа седиментации 13S и выше.
Синтезируется зрелыми В-лимфоцитами и их по­томками - плазматическими клетками со­ответствующей специализации только в пре­делах слизистых и выделяется в их секреты. Объем продукции может достигать 5 г в сутки. Пул slgA считается самым многочисленным в организме - его количество превышает суммарное содержание IgM и IgG. В сыворотке крови не обнаруживается.
Секреторная форма IgA - основной фак­тор специфического гуморального местного иммунитета слизистых оболочек желудочно-кишечного тракта, мочеполовой системы и респираторного тракта. Благодаря S-цепи он устойчив к действию протеаз. slgA не активи­рует комплемент, но эффективно связывается с антигенами и нейтрализует их. Он препятс­твует адгезии микробов на эпителиальных клетках и генерализации инфекции в преде­лах слизистых.
Иммуноглобулин класса Е. Называют так­же реагином. Содержание в сыворотке крови крайне невысоко - примерно 0,00025 г/л. Обнаружение требует применения специаль­ных высокочувствительных методов диагнос­тики. Молекулярная масса - около 190 кДа, константа седиментации - примерно 8S, мо­номер. На его долю приходится около 0,002 % всех циркулирующих Ig. Этот уровень дости­гается к 10-15 годам жизни.
Синтезируется зрелыми В-лимфоцитами и плазматическими клетками преиму­щественно в лимфоидной ткани бронхолегочного дерева и ЖКТ.
Не связывает комплемент. Не проходит че­рез плацентарный барьер. Обладает выражен­ной цитофильностью - тропностью к тучным клеткам и базофилам. Участвует в развитии гиперчувствительности немедленного типа - реакция I типа.
Иммуноглобулин класса D. Сведений об Ig данного изотипа не так много. Практически полностью содержится в сыворотке крови в концентрации около 0,03 г/л (около 0,2 % от общего числа циркулирующих Ig). IgD имеет молекулярную массу 160 кДа и константу се­диментации 7S, мономер.
Не связывает комплемент. Не проходит че­рез плацентарный барьер. Является рецепто­ром предшественников В-лимфоцитов.


50.Иммунокомпетентные клетки: Т- и В- лимфоциты, макрофаги, их кооперация

Иммунокомпетентные клетки - клетки, способные специфически распознавать антиген и отвечать на него иммунной реакцией. Такими клетками являются Т- и В-лимфоциты (тимусзависимые и костномозговые лимфоциты), которые под влиянием чужеродных агентов дифференцируются в сенсибилизированный лимфоцит и плазматическую клетку.
Т-лимфоциты – это сложная по составу группа клеток, которая происходит от полипотентной стволовой клетки костного мозга, а созревает и дифференцируется в тимусе из предшественников. Т-лимфоциты разделяются на две субпопуляции: иммунорегуляторы и эффекторы. Задачу регуляции иммунного ответа выполняют Т-хелперы. Эффекторную функцию осуществляют Т-киллеры и естественные киллеры. В организме Т-лимфоциты обеспечивают клеточные формы иммунного ответа, определяют силу и продолжительность иммунной реакции.
B-лимфоциты – преимущественно эффекторные иммунокомпетентные клетки. Зрелые В-лимфоциты и их потомки – плазматические клетки являются антителопродуцентами. Их основными продуктами являются иммуноглобулины. В-лимфоциты участвуют в формировании гуморального иммунитета, В-клеточной иммунологической памяти и гиперчувствительности немедленного типа.
Макрофаги - клетки соединительной ткани, способные к активному захвату и перевариванию бактерий, остатков клеток и других, чужеродных для организма частиц. Основная функция макрофагов сводится к борьбе с теми бактериями, вирусами и простейшими, которые могут существовать внутри клетки-хозяина, при помощи мощных бактерицидных механизмов. Роль макрофагов в иммунитете исключительно важна - они обеспечивают фагоцитоз, переработку и представление антигена T-клеткам.
Кооперация иммунокомпетентных клеток . Иммунная реакция организма может иметь различный характер, но всегда начинается с захвата антигена макрофагами крови и тканей или же со связывания со стромой лимфоидных органов. Нередко антиген адсорбируется также на клетках паренхиматозных органов. В макрофагах он может полностью разрушаться, но чаще подвергается лишь частичной деградации. В частности, большинство антигенов в лизосомах фагоцитов в течение часа подвергается ограниченной денатурации и протеолизу. Оставшиеся от них пептиды (как правило, два-три остатка аминокислот) комплексируются с экспрессированными на внешней мембране макрофагов молекулами МНС.
Макрофаги и все другие вспомогательные клетки, несущие на внешней мембране антигены, называются антигенпрезентирующими, именно благодаря им Т- и В-лимфоциты, выполняя функцию презентации, позволяют быстро распознавать антиген.
Иммунный ответ в виде антителообразования происходит при распознавании В-клетками антигена, который индуцирует их пролиферацию и дифференциацию в плазмоцит. Прямое воздействие на В-клетку без участия Т-клеток могут оказать только тимуснезависимые антигены. В этом случае В-клетки кооперируются с Т-хелперами и макрофагами. Кооперация на тимусзависимый антиген начинается с его презентации на макрофаге Т-хелперу. В механизме этого распознавания ключевую роль имеют молекулы МНС, так как рецепторы Т-хелперов распознают номинальный антиген как комплекс в целом или же, как модифицированные номинальным антигеном молекулы МНС, приобретшие чужеродность. Распознав антиген, Т-хелперы секретируют γ-интерферон, который активирует макрофаги и способствует уничтожению захваченных ими микроорганизмов. Хелперный эффект на В-клетки проявляется пролиферацией и дифференциацией их в плазмоциты. В распознавании антигена при клеточном характере иммунного ответа, кроме Т-хелперов, участвуют также Т-киллеры, которые обнаруживают антиген на тех антигенпрезентирующих клетках, где он комплексируется с молекулами МНС. Более того, Т-киллеры, обусловливающие цитолиз, способны распознавать не только трансформированный, но и нативный антиген. Приобретая способность вызывать цитолиз, Т-киллеры связываются с комплексом антиген + молекулы МНС класса 1 на клетках-мишенях; привлекают к месту соприкосновения с ними цитоплазматические гранулы; повреждают мембраны мишеней после экзоцитоза их содержимого.
В результате продуцируемые Т-киллерами лимфотоксины вызывают гибель всех трансформированных клеток организма, причем особенно чувствительны к нему клетки, зараженные вирусом. При этом наряду с лимфотоксином активированные Т-киллеры синтезируют интерферон, который препятствует проникновению вирусов в окружающие клетки и индуцирует в клетках образование рецепторов лимфотоксина, тем самым повышая их чувствительность к литическому действию Т-киллеров.
Кооперируясь в распознавании и элиминации антигенов, Т-хелперы и Т-киллеры не только активируют друг друга и своих предшественников, но и макрофагов. Те же, в свою очередь, стимулируют активность различных субпопуляций лимфоцитов.
Регуляция клеточного иммунного ответа, как и гуморального, осуществляется Т-супрессорами, которые воздействуют на пролиферацию цитотоксических и антигенпрезентирующих клеток.
Цитокины. Все процессы кооперативных взаимодействий иммунокомпетентных клеток, независимо от характера иммунного ответа, обусловливаются особыми веществами с медиаторными свойствами, которые секретируются Т-хелперами, Т-киллерами, мононуклеарными фагоцитами и некоторыми другими клетками, участвующими в реализации клеточного иммунитета. Все их многообразие принято называть цитокинами. По структуре цитокины являются протеинами, а по эффекту действия - медиаторами. Вырабатываются они при иммунных реакциях и обладают потенциирующим и аддитивным действием; быстро синтезируясь, цитокины расходуются в короткие сроки. При угасании иммунной реакции синтез цитокинов прекращается.

51.Антителообразование: первичный и вторичный иммунный ответ.

Способность к образованию ан­тител появляется во внутриутробном периоде у 20-недельного эмбриона; после рождения начинается собственная продукция иммуноглобулинов, которая увеличивается до наступления зре­лого возраста и несколько снижается к старости. Динамика об­разования антител имеет различный характер в зависимости от силы антигенного воздействия (дозы антигена), частоты воздействия антигена, состояния организма и его иммунной системы. При первичном и повторном введении антигена динамика антителообразования также различна и протекает в несколько ста­дий. Выделяют латентную, логарифмическую, стацио­нарную фазу и фазу снижения.
В латентной фазе происходят переработка и представление антигена иммунокомпетентным клеткам, размножение клона клеток, специализированного на выработку антител к данному антигену, начинается синтез ан­тител. В этот период антитела в крови не обнаруживаются.
Во время логарифмической фазы синтезированные антитела высво­бождаются из плазмоцитов и поступают в лимфу и кровь.
В ста­ционарной фазе количество антител достигает максимума и ста­билизируется, затем наступает фаза снижения уровня антител. При первичном введении антигена (первичный иммунный ответ) латентная фаза составляет 3-5 сут, логарифмическая - 7- 15 сут, стационарная - 15-30 сут и фаза снижения - 1-6 мес. и более. Особенностью первичного иммунного ответа является то, что первоначально синтезируется IgM, а затем IgG.
В отличие от первичного иммунного ответа при вторичном введении антигена (вторичный иммунный ответ) латентный период укорочен до нескольких часов или 1-2 сут, логарифми­ческая фаза характеризуется быстрым нарастанием и значитель­но более высоким уровнем антител, который в последующих фазах длительно удерживается и медленно, иногда в течение не­скольких лет, снижается. При вторичном иммунном ответе в отличие от первичного синтезируются главным образом IgG.
Такое различие динамики антителообразования при первич­ном и вторичном иммунном ответе объясняется тем, что после первичного введения антигена в иммунной системе формирует­ся клон лимфоцитов, несущих иммунологическую память о данном антигене. После повторной встречи с этим же антиге­ном клон лимфоцитов с иммунологической памятью быстро раз­множается и интенсивно включает процесс антителогенеза.
Очень быстрое и энергичное антителообразование при повтор­ной встрече с антигеном используется в практических целях при необходимости получения высоких титров антител при производстве диагностических и лечебных сывороток от иммунизиро­ванных животных, а также для экстренного создания иммуни­тета при вакцинации.

Выполнила студентка 3 курса педиатрического факультета
10 группы Магомедова Мадина

Антитела – специфические белки гаммаглобулиновой природы образующиеся в
организме в ответ на антигенную стимуляцию
и способные специфически
взаимодействовать с антигеном (как in vivo
так и in vitro в пробирке)
В соответствии с международной
классификацией совокупность сывороточных
белков, обладающих свойствами антител,
называют иммуноглобулинами.
Уникальность антител заключается в том, что
они способны специфически
взаимодействовать только с тем антигеном
который вызвал их образование.

Все иммуноглобулины являются
иммунными, то есть образуются в
результате иммунизации контакта
антитела с антигеном.
По происхождению они
подразделяются на:
- нормальные (анамнестические)которые обнаруживаются в любом
организме, как результат бытовой
иммунизации.

- инфекционные антитела – которые
накапливаются в организме в период
инфекционного заболевания
- постинфекционные антитела которые
обнаруживаются в организме после
перенесенного инфекционного
заболевания.
- поствакцинальные антитела –
возникает после искусственной
иммунизации.

Иммуноглобулины всегда специфичны
антигенам, которые вызвали их
образование.
Иммуноглобулины по
специфичности также делятся на
группы:
- группоспецифические
- видоспецифические
- вариантспецифические
- перекрестнореагирующие

В зависимости от локализации
иммуноглобулины разделенны на 3 группы:
- сывороточные, находящиеся в кровяном
русле.
- секреторные- содержатся в секретах
содержимое желудка, в слюнных секретах,
особенно много содержатся в грудном
молоке. То есть это те иммуноглобулины
,которые обеспечивают местный иммунитет
слизистых оболочек.
- поверхностные, находящиеся на
поверхности иммунокомпитентных клеток,
особенно на B- лимфоцитах.

Структурной единицей является
мономер, который состоит из двух
легких и двух тяжелых цепей. Класс G и
сывороточные иммуноглобулин А
являются мономерными, другие – это
пентомерные то есть полимерные
иммуноглобулины. У полимерных
иммуноглобулинов имеется
дополнительная полипептитная цепь,
которая объединяет отдельные
субъединицы.

Основные биологические свойства
антител:
- специфичность – способность
взаимодействия с определенным своим
антигенном с соответствии эпитопом
антигена и активного центра антител.

- валентность – количество антител способных
реагировать с антигеном активных центров, это
связанно с молекулярной организацией моно или
полимер. Иммуноглобулины могут быть двух
валентными (G) или поливалентными, пентомеры
иммуноглобулина М имеют около 10 активных
центров. Двух и более валентные антитела называют
полными антителами. Не полные антитела имеют
только один активный центр взаимодействующий с
антигеном, который блокирует эффект на
иммунологических реакциях (например на
агглютинационные тесты), такие антитела выделяют
в антиглобулиновой пробе Кубса) либо в реакции
угнетения связывания комплимента.

- аффильность- это прочная связь между
эпитопом антигена и активным центром
антител (это зависит от их пространственного
соответствия.
- авильность – интегральная характеристика
в силу взаимодействия антигена и антител с
учетом взаимодействия всех активных
центров с эпитопами.Поскольку антигены
зачастую поливалентные связь между
различными антигеннами осуществляется
благодаря нескольким антителам.

-гетерогенность обусловлена
антигенными свойствами антитен
,обусловленные наличием в них трех
видов антительных детерминант:
1.изотипические –принадлежность
антител к определенному классу
иммуноглобулинов.
2.аллотипические –обусловлены
аллельными различиями
иммуноглобулинов, кодирующиеся
соответствующими аллельными
генами.

3.идиотипические- отражают
индивидуальные особенности
иммуноглобулинов, определяемыми
характеристиками активных центров
молекул антител даже тогда, когда
антитело к конкретному антигену
относится к одному классу и даже
алотипу, они характеризуются
специфическими отличиями друг от
друга.
Это зависит от особенности строения
Ви-участков Н и R цепи множество
различных вариантов их
аминокислотной последовательности.

Характеристики конкретных классов
иммуноглобулинов.
1.Иммуноглобулины класса G- это мономеры,
включающие 4 суб. класса. Концентрация в
крови от 5 до 17 грамм на литр, период
распада антител около 3-4 недель. Это
основной класс иммуноглобул0инов который
защищает организм от бактерий, токсинов и
вирусов. В наибольшем количестве
иммуноглобулины класса G вырабатываются
на стадии выздоровления (после
инфекционного заболевания), их еще
называют поздние антитела при вторичном
иммуном ответе.

Иммуноглобулины G1 и G4
специфически через фрагменты
связываются с возбудителем, то есть
происходит опссонизация с
возбудителем. Благодаря FC
фрагментам иммуноглобулин G
взаимодействует с FC фрагментами
фагоцитов, способствуя фагоцитозу или
лизису бактерии.

Иммуноглобулины класса G способны
нейтрализовать бактериальный
экзотоксин и связывать комплимент.
Только иммуноглобулины класса G
способны проникать через плаценту и
переходить от матери к плоду, то есть
это единственный иммуноглобулин
который проходит трансплацентарно.
Иммуноглобулины класса G относятся
к категории поздних антител, они
появляются позже и более длительно
циркулируют в крови.

IgM- молекула этого иммуноглобулина
представляет собой пентамерий lg,
который состоит из 5 субъединиц,
соединенных дисульфидными связями
и их дополнительной еще одной цепью.
Имеет 10 антиген связывающих
центров.

Филогенетически это наиболее древний
иммуноглобулин. Наиболее ранний класс
иммуноглобулинов, который образуется при
первичном попадании антигена в организм и
это основной класс иммуноглобулинов
который синтезируется у новорожденных и
младенцев. Наличие LgM у новорожденных
это как правило показатель внутриутробного
заражениями такими инфекциями как
(краснуха, таксоплазмоз, и другие
внутриутробные инфекции, по скольку
материнские антитела иммуноглобулинов
через плаценту не проходят

Конценрация LgM в крови ниже чем LgG
(до 2х грамм на литр) период полу
распада около недели, то есть
разрушаются быстро.
LgM способны агглютинировать
бактерии нейтрализовать вирусы и
активизировать фагоцитоз, связывать
экзотоксин в граммотрицательных
бактерий. LgM обладают болше чем
LgG авильностью- 10 активных центров,
аффильность меньше чем LgG

LgA- выделяют сывороточные и секреторные:
-сывороточные от 0.4 до 0.2
- секреторные иммуноглобулины находятся
в большом количестве в ротовой полости,
слизистой носа и в пищеварительных соках.
Они являются первой линией защиты
слизистых, обеспечивая местный иммунитет.
Секреторный иммуноглобулин состоит из
мономера,G цепи и гликопротеина, так
назыаемого секреторного компонента.
LgА1 преобладает в сыворотке и
субкласс второго LgА в
экстраваскулярных секретах

Секретный компонент вырабатывается
эпителиальными клетками слизистых
оболочек (присоединяется к молекулам
иммуноглобулина в момент прохождения
последних через эпителиальные клетки.
Секреторный компонент повышает
устойчивость молекул секреторного
компонента иммуноглобулина А к действию
протелитических ферментов. Основная роль
обеспечения местного иммунитета слизистых
оболочек. Они препятствуют прикреплению
бактерии к слизистой, обеспечивают синтез
трансполимерных иммунных комплексов,
нейтрализирует энтеротоксин и активирует
фагоцитоз и систему комплимента.

LgЕ представляет собой мономер в
сыворотке крови находящийся в очень
низких концентрациях. Основную роль с
фрагментами прикрепляется к тучным
клеткам и базофилам и опосредует
реакции гиперчувствительности
немедленного типа. К этим LgЕ
относятся антитела аллергии.Уровень
иммуноглобулина повышается также
при гельминтных инвазиях.

LgD мономеры обнаруживаются на
поверхности развивающихся В
лимфоцитов. В сыворотке находятся в
крайне редких концентрациях.Их
биологическая роль точно не
установлена,но полагают,что они
участвуют в дифференциации В клеток
,способствуют развитию анти и
диапетического ответа,участвуют в
аутоиммунных процессах.

Динамика антителообразования.
Первичный и вторичный иммунный
ответ,первичный возникает
-при первичном контакте с
возбудителем антигена
,вторичный
при вторичном.
Основные отличия первичного от
вторичного
-продолжительность скрытого периода
больше при первичном.
- количество синтезируемых антител
больше при вторичном контакте

-последовательность синтеза антител
различных классов при первичном
контакте более длительно
вырабатываются иммуноглобулины
класса М,при вторичном быстро
синтезируются и преобладают
иммуноглобулины класса G .Вторичный
иммунный ответ обусловлен
формированием клеток иммунной
памяти,например, встреча возбудителя
в период вакцинации.
Иммунодефицитные состояния (ИД) возникают в результате выпадения или недостаточности функции одного или нескольких элементов иммунной системы. Причинами заболеваний, обусловленных специфической иммунной недостаточностью, служат нарушения функций Т- или В-лимфоцитов – основы приобретенного иммунитета. Неспецифические иммунодефициты связаны с нарушениями в таких элементах иммунной системы, как комплемент, фагоциты, белки острой фазы воспаления.

^ ИД можно разделить на 3 группы.


  1. Физиологические иммунодефициты (новорожденность, беременность, старость).

  2. Первичные (врожденные), как правило, наследственные, но могут возникнуть и вследствие дефектов, возникших в эмбриональный период.

  3. Вторичные – вследствие эндогенных факторов (болезни) или экзогенных (радиация и др.)
^

Иммунодефицит раннего постнатального периода.

Онтогенез


  • HLA-антигены у эмбриона появляются через 96 ч после оплодотворения (8 клеточных делений),

  • 4-5 неделя – полипотентная (гемопоэтическая) стволовая клетка образуется в каудальном отделе спланхноплевры.

  • 5-6 неделя – миграция в желточный мешочек, печень, там определяются все форменные элементы крови, даже Т-лимфоциты, хотя тимуса еще нет, но эпителий закладки тимуса уже секретирует активные тимические факторы.

  • 7-8 недель – тимус заселяется Т-лимфоцитами.

  • 8-10 неделя – лимфоциты определяются в периферической крови

  • 10-12 неделя лимфоциты проявляют способность к адгезии, реакции бластной трансформации на ФГА и реакции трансплантат против хозяина (только на ксенотрансплантаты).

  • 11-12 неделя – заселяется селезенка и костный мозг, органы, где уже в значимых количествах появляется В-лимфоциты.

  • 12 недель – за 4 недели количество лимфоцитов в тимусе увеличивается в 30-40 раз, тимус приобретает дефинитивное строение.

  • 12-16 неделя начинают синтезироваться фетальные антигены α (АФП), α 2 , γ, β-протеин и др., примерно 10 антигенов (раково-эмбриональные антигены), оказывающие супрессивное действие на иммунитет матери.

  • 13-16 неделя – начинают заселяться лимфатические узлы, а еще позже – лимфоидная ткань, ассоциированная со слизистой.

  • С 16-20 недели – количественное соотношение Т и В клеток в органах иммунной системы в целом соответствует таковому у взрослых: в тимусе – Т-85%, В-1,5%, в лимфатических узлах – Т-50-60%, В-1-10%, в селезенке – Т-10%, В-35%, в костном мозге – Т-2%, В-20%. Однако до момента рождения из тимуса выселяются лишь γδ + -клетки с ограниченной способностью к распознаванию антигена.

  • С 20 недели – на инфицирование плод отвечает образованием плазматических клеток и выработкой антител классов IgM, IgD, IgG и IgA.

  • 36-40 неделя – в периферической крови 3-6*10 9 /л лейкоцитов.

Формирование иммунной системы не завершается к моменту рождения. После рождения на протяжении нескольких недель периферия иммунной системы заселяется αβ + -клетками. В течение периода колонизации лимфоидных органов Т-лимфоцитами функция тимусзависимого звена иммунной системы остается сниженной. Это проявляется:


  • снижением реакции ГЗТ (появляются на последних стадиях эмбриогенеза и достигают полного развития только к 1 году),

  • слабостью ответа Т-клеток на митогены и антигены, лишь ответ на антигены гистосовместимости (гомотрансплантаты) формируется рано, к моменту рождения,

  • низкой выработкой цитокинов. Недостаточность продукции интерферона приводит к снижению функции макрофагов, низкая секреторная активность Тх2-клеток и слабая экспрессия CD40, приводит недостаточности синтеза антител.
На скорость развития приобретенного иммунитета (развитие лимфатических узлов, созревание и функциональную активность лимфоцитов, а также синтез иммуноглобулинов) большое влияние оказывает флора кишечника. Дисбактериоз отрицательно влияет на все эти процессы.
^

Динамика становления продукции иммуноглобулинов


В организме плода в заметных количествах образуется лишь IgM (с 11-13 недели беременности), преимущественно выступает в качестве групповых факторов - аглютининов. К рождению 0,1-0,2 г/л. Если выше – возможно внутриутробное инфицирование. Синтез IgM достигает уровня взрослых на втором году жизни.

IgG (все субклассы) появляются в крови плода на 10-12 неделе. Он поступает из организма матери через плаценту посредством процесса Fc-зависимого транспорта. Первый пик содержания IgG приходится на момент рождения (уровень как у взрослого) Время полужизни молекул IgG в циркуляции составляет примерно 20-23 дня, поэтому уровень материнского IgG к 2-м месяцем снижается вдвое, к 6 – практически исчезает. Собственный синтез IgG начинается примерно с 3 месяцев, но «взрослого» уровня он достигает лишь к 3-6 годам.

У новорожденных в крови такой же, как у матерей и даже выше, титр антител к:


  • токсинам дифтерийной палочки, столбняка, стафилококка и стрептококка,

  • вирусу полиомиелита и японского энцефалита.

  • вирусу гриппа (А2, С)

  • вирусу парагрипа (I, II, III)
Ниже, чем у матерей титр антител к антигенам клеточной стенки стрептококка и стафилококка, коклюшу, бактериям кишечной группы (для защиты от этих инфекций IgA важнее, чем IgG) тканевому антигену.

Титр антител поддерживается при кормлении ребенка грудью. Так как у грудных детей IgG-антитела могут всасываться в ЖКТ, не теряя активность.

Материнские иммуноглобулины других классов не преодолевают плацентарный барьер в связи с отсутствием на поверхности клеток трофобласта соответствующих Fc-рецепторов, а также из-за больших размеров молекул IgA и IgM.

Сывороточный уровень IgA у новорожденного – 0,002-0,02 г/л, начинает синтезироваться в заметных количествах с 3-6 месяцев, но в период кормления грудью, поступает с молоком матери, защищает, слизистую оболочку желудочно-кишечного тракта и частично всасывается в неизмененном виде. Секреторный компонент начинает синтезироваться через неделю после рождения и достигает дефинитивных значений только к 10-11 годам.

Способность к образованию IgE, плод приобретает на 11-12 неделе, к рождению концентрация достигает 10-200 мкг/л. После рождения уровень медленно растет (у здоровых), достигая пика к 6-15 годам, затем постепенно снижается до «взрослого» содержания – менее 300 мкг/л. Период полувыведения IgE из кровотока 2-3 суток, в тканях длительность его полужизни 8-14 суток.

В возрасте 3-6 месяцев выраженность гуморального дефицита достигает максимума, так как исчерпываются запасы материнских IgG, a собственные IgG только начинают синтезироваться. Особенно это выражено у недоношенных. В годовалом возрасте суммарный синтез иммуноглобулинов составляет примерно 60% от количества у взрослого (IgG –80%, IgM – 75%, IgA – 20%) После года спектр гуморального дефицита сужается, но полностью дефицит ликвидируется только к 10 годам.

На ранних этапах онтогенеза антигенраспознающий репертуар V-генов более узкий, чем у взрослых, так как в состав перестроенного V-гена иммуноглобулинов и TCR с большей вероятностью включаются зародышевые V-сегменты, прилежащие к 3"-концу этой генетической области.

Таким образом, у детей первых лет жизни имеет место естественный клеточный и в большей степени гуморальный иммунодефицит, проявляющийся не только снижением синтеза всех изотипов иммуноглобулинов, но и уменьшением их специфичности. Указанные особенности обуславливают повышенную восприимчивость детей к простудным заболеваниям и прочим инфекциям.
^

Иммунодефицит при старении


Трудно точно определить возраст, в котором проявляется старческий иммунодефицит. Большинство клинически значимых проявлений иммунодефицита появляются обычно после 70 лет или могут не проявляться вовсе. Однако изменения в иммунной системе, в итоге приводящие к старческому иммунодефициту, постепенно проявляются в течение всей жизни человека. Так, инволюция тимуса начинается с годовалого возраста.
^

Этапы возрастной инволюции тимуса.


1. «Перифериализация» функций тимуса.


  • Часть «полномочий» передается от тимуса популяции периферических Т-лимфоцитов.

  • На периферии происходит накопление Т-клеток памяти против эпитопов, маркирующих основные внешние агенты (инфекционные, пищевые и т.д.), эта «библиотека» поддерживается на периферии и обеспечивает защиту от основной массы потенциально агрессивных факторов.

  • Тимусзависимый путь развития поддерживается в незначительном масштабе при необходимости ответа на более экзотические иммуногены.

    1. Снижение «пропускной способности» тимуса. Число Т-клеток, образующихся в тимусе у старых людей, составляет менее 1% от их количества, продуцируемого тимусом новорожденных.

    2. Снижение секреции основного гормона тимуса тимулина. Начинается с периода полового созревания и к возрасту 60 лет гормон практически не удается обнаружить. Уровень других гормонов тимуса с возрастом также снижается, хотя и несколько слабее.

    3. Позже 60 лет происходит резкое опустошение тимуса: одновременно утрачиваются эпителиальные и лимфоидные клетки. В первую очередь атрофируется кора, участки нормальной ткани тимуса сохраняются вокруг сосудов.
Постоянно в течение всей жизни происходит атрофия эпителиального ретикулума. Лимфоэпителиальные структуры замещаются жировой тканью, поэтому масса тимуса у человека практически не меняется в течение жизни. Потеря активной ткани тимуса составляет в среднем возрасте примерно 3%, а в старости – 1% в год. Теоретически при таком темпе она должна практически полностью исчезнуть к 120 годам жизни.

Дефицит гормонов тимуса приводит к функциональной недостаточности периферических Т-лимфоцитов. Этот эффект, как правило, достаточно долго компенсируются и не приводят к проявлениям иммунодефицита, однако после 60-70 лет обычно регистрируется:


  • снижение численности Т-лимфоцитов на периферии (особенно в циркуляции). В большей степени оно затрагивает CD4 + , чем СВ8 + субпопуляцию,

  • среди хелперов в большей степени снижаются Th1-, чем Тh2-клетки,

  • численность В-лимфоцитов и NK-клеток существенно не изменяется,

  • активность фагоцитов может даже повышается,

  • снижается тимусзависимый гуморальный ответ вследствие чего нарушается «созревание аффинитета» повышается концентрация низкоаффинных иммуноглобулинов, преимущественно IgA. В специфический гуморальный ответ вовлекается ограниченное число специфических клонов (олигоклональный ответ) и увеличивается вклад поликлональной (т.е. неспецифической) составляющей,

    • нарушаются селекционные процессы в тимусе и регуляторная активность Т-клеток,

    • примерно у 50 % старых людей определяются высокий титр аутоантител к распространенным (ДНК, коллаген, IgG), и органоспецифическим (белки щитовидной железы) антигенам. Это накопление аутоантител довольно редко проявляется клинически, но положительно связано со смертностью старых людей от сосудистых заболеваний и рака.

Показано, что развитие климактерического синдрома (КС) и его тяжесть во многом определяются гиперактивностью аутоиммунных реакций по отношению к антигенам яичников. В качестве критериев тяжести КС предложено использовать следующие величины титров антител против яичников:


  • легкая степень тяжести - от 1:8 до 1:32;

  • средняя степень тяжести - от 1:32 до 1:128;

  • тяжелый КС - выше 1:128 [МайданникИ.Л., 1988].
КС, осложненный ожирением, сопровождается уменьшением активности фагоцитов. Эти исследования привели к успешному использованию для коррекции иммунного статуса и самих проявлений КС (наряду с заместительной гормональной терапией), тималина или тактивина, спленина (в сочетании с витаминами Е и С, глютаминовой кислотой).

Резюмируя вышеизложенное, следует подчеркнуть: возрастные нарушения в тимусе и ослабление Т-клеточного надзора создают повышенную предрасположенность к аутоиммунным процессам, способствует повышению частоты опухолей, приводят к ослаблению проявлений аллергических процессов.

Повторные и хронические стрессы могут ускорить старение иммунной системы.